
970

Generalized Hertz model
for bimodal nanomechanical mapping
Aleksander Labuda*, Marta Kocuń, Waiman Meinhold, Deron Walters and Roger Proksch

Full Research Paper Open Access

Address:
Asylum Research, an Oxford Instruments company, Santa Barbara,
CA, 93117, USA

Email:
Aleksander Labuda* - aleks.labuda@oxinst.com

* Corresponding author

Keywords:
bimodal atomic force microscopy; bimodal spectroscopy; contact
mechanics; multifrequency; nanomechanical mapping;
nanomechanics

Beilstein J. Nanotechnol. 2016, 7, 970–982.
doi:10.3762/bjnano.7.89

Received: 28 March 2016
Accepted: 15 June 2016
Published: 05 July 2016

This article is part of the Thematic Series "Advanced atomic force
microscopy techniques IV".

Guest Editor: T. Glatzel

© 2016 Labuda et al.; licensee Beilstein-Institut.
License and terms: see end of document.

Abstract
Bimodal atomic force microscopy uses a cantilever that is simultaneously driven at two of its eigenmodes (resonant modes). Param-

eters associated with both resonances can be measured and used to extract quantitative nanomechanical information about the sam-

ple surface. Driving the first eigenmode at a large amplitude and a higher eigenmode at a small amplitude simultaneously provides

four independent observables that are sensitive to the tip–sample nanomechanical interaction parameters. To demonstrate this, a

generalized theoretical framework for extracting nanomechanical sample properties from bimodal experiments is presented based

on Hertzian contact mechanics. Three modes of operation for measuring cantilever parameters are considered: amplitude, phase,

and frequency modulation. The experimental equivalence of all three modes is demonstrated on measurements of the second eigen-

mode parameters. The contact mechanics theory is then extended to power-law tip shape geometries, which is applied to analyze

the experimental data and extract a shape and size of the tip interacting with a polystyrene surface.

970

Introduction
Over the decades since its invention [1] the atomic force micro-

scope (AFM) has been used in a variety of modes to charac-

terize micro- and nanoscale heterogeneous structures in com-

posites and other advanced materials. The AFM can provide

high resolution topographic and mechanical properties mapping

using techniques such as force curves [2,3], contact resonance

[4,5], force modulation [6,7], phase imaging [8,9], loss tangent

imaging [10], friction force microscopy [11], creep compliance

[12], shear modulation force microscopy [13], pulsed force

microscopy [14] and torsional approaches [15]. These tech-

niques can be broadly classified as either “parametric” or “spec-

troscopic” techniques.

In parametric nanomechanical techniques, the sample proper-

ties are deduced from changes in the parameters of a driven

cantilever that is oscillating in a (quasi) steady state while inter-

acting with the sample surface. For example, tapping-mode

AFM [16,17] (also known as amplitude-modulation (AM) AFM

http://www.beilstein-journals.org/bjnano/about/openAccess.htm
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Figure 1: Diagram of the theory presented in this paper, showing relationship between inherent sample properties and tip geometry parameters to the
AFM observables for bimodal AFM in the context of Hertzian contact mechanics. The tip shape is assumed to have a power-law profile with size pa-
rameter L and shape parameter m.

[18-20]), is one of the most commonly used parametric tech-

niques, where the cantilever is driven on resonance and the can-

tilever–sample distance is adjusted by a feedback loop to main-

tain a constant oscillation amplitude at every image pixel. The

time required for the cantilever to reach a steady state defines

the acquisition speed, allowing tapping-mode imaging to

achieve very high speeds ultimately only limited by the cantile-

ver bandwidth. However, the small number of tapping-mode

observables (amplitude and phase) limits the extraction of

absolute storage and loss moduli, as they cannot be distin-

guished from changes in indentation depth. In tapping mode,

only the ratio of the storage to loss modulus can be measured

[10,21,22]. The same limitation applies to many other para-

metric techniques, such as force modulation [6,7] and other

single-frequency imaging modes, such as frequency-modula-

tion (FM) AFM [23]. Separating the storage and loss moduli,

and quantifying them, requires either additional independent

observables or the use of spectroscopic methods.

Spectroscopic techniques rely on changing the operating condi-

tions of the cantilever to provide the necessary information to

extract nanomechanical properties of the sample for a given

image pixel. This can be achieved by changing the

cantilever–sample distance [24] or sweeping the drive frequen-

cy [25], amongst others [26]. Examples of well-established

spectroscopic techniques are nanoindentation [27] and force

curves as well as dynamic force curves performed with an oscil-

lated cantilever. The time-varying cantilever response serves as

input to a model for extracting nanomechanical properties of the

sample at any location. These techniques are by nature slow for

imaging, as they measure time-varying changes of the cantile-

ver at every pixel.

Recently, parametric techniques have been extended by driving

two or more cantilever resonances simultaneously in order to

increase the number of observables, which is required to quan-

tify the storage and loss moduli. Advances in this direction

include bimodal [28-33], trimodal [34] or more generally multi-

modal/multifrequency [35] techniques, and have demonstrated

quantitative mapping without compromising on the high speeds

that define parametric imaging techniques. Currently, state-of-

the-art bimodal methodologies are mostly based on FM-AFM

techniques that rely on elaborate mathematical theories [36-41],

involving fractional calculus and Laplace transforms for

relating AFM observables to nanomechanical properties. The

mathematical complexity of these techniques can obscure phys-

ically intuitive understanding of the cantilever dynamics in

bimodal AFM experiments.

Here, we present a simplified theory for bimodal AFM

with a large fundamental resonance oscillation amplitude

and small higher resonance amplitude. The theory is based

on a binomial approximation of the weight function for

extracting the interaction stiffness for both resonant modes,

each yielding a simple analytical expression. These two

independent pieces of information are refactored to provide

information about modulus and indentation depth. While the

theory is generally applicable to a wide range of tip–sample

interaction models, the derivation here begins in the context

of a Hertzian contact with a paraboloidal tip and is then general-

ized to any tip shape described by a power-law profile. This

theory is then experimentally applied to three variations of

bimodal AFM involving different dynamic AFM modes of

operation [42,43], namely amplitude modulation (AM)

[1,18,19], phase modulation (PM) [43-46] and frequency modu-

lation (FM) [23,36,47]. Finally, a method for extracting the tip

size and tip shape from bimodal AFM approach curves is

presented and demonstrated on a polystyrene sample. Figure 1

provides a diagram of the theory presented in the following

three sections.
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Methods
Hertzian contact mechanics
The Hertzian contact model involves the interaction stiffness

kint versus indentation depth δ between a paraboloidal tip of

radius R and a flat sample as

(1)

where the effective Young’s modulus Eeff combines deforma-

tion of the tip and sample [48]. Similar expressions can be

derived for a tip in the shape of a punch or a cone [49].

Here, these three special cases are generalized to any axisym-

metric tip shape whose cross-sectional radius r, as a function of

height z, is governed by the power law

(2)

where the characteristic length scale L and the exponent param-

eter  fully define the tip size and shape, respectively.

Figure 2a illustrates Equation 2 for five values of m, including

the three special cases of punch, paraboloid, and cone. Note that

“sphere” is used as a shorthand for “paraboloid” in the scien-

tific vernacular.

Figure 2: a) The generalized tip shape is drawn for various values of
m. b) The indentation of a paraboloidal indenter into an elastic surface
illustrates the distinction between the cross-sectional indentation
radius versus the true contact radius.

Upon purely elastic indentation of such a power-law indenter

into a sample surface to an indentation depth δ, the true contact

radius rc is smaller than the cross-sectional radius r(δ) because

of deformation of the surface, as can be understood from

Figure 2b. The exception is the punch model for m = 1, where

no reduction in radius occurs. The contact radius correction

factor αc quantifies the reduction in contact radius rc with

respect to r(δ) by

(3)

As expected, αc = 1 for m = 1 (punch), and then αc monotoni-

cally decreases to αc = 2/π ≈ 0.64 for m = 2 (cone). The mathe-

matical form of αc is presented in the Appendix (b).

Importantly, it is the true contact radius rc that defines the

tip–sample interaction stiffness, as derived by Oliver and Pharr

[27]:

(4)

Substituting in the expression for rc leads to the general form

(5)

The interaction stiffness in Equation 5 is plotted for three

special cases in Figure 3. For the punch model with m = 1, the

length scale parameter L is equal to the punch radius R. For the

paraboloidal indenter model with m = 3/2, L is the effective

“sphere” diameter 2R. For the conical indenter with m = 2, L

drops out and the cone half-angle θ = 45°. (Given the loss of the

length scale parameter L in the degenerate case m = 2 (cone), a

half-angle parameter θ may be introduced by multiplying kint by

(tan θ)−1 to fully define the geometry of the conical indenter, if

necessary.)

Bimodal interaction theory
This section first describes how the tip–sample interaction stiff-

ness of a paraboloidal (“spherical”) tip affects the changes in

effective stiffness of the first and second eigenmodes of the can-

tilever. Then, the results are generalized to a power-law tip

shape.

Paraboloidal tip
For the first eigenmode driven with a large oscillation ampli-

tude A1, the change in stiffness of the interacting cantilever Δk1

averaged over one cycle can be computed by integrating kint(δ)

with a semi-circular weight function that spans the peak-to-peak
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Figure 3: a) The cantilever motion during oscillation in bimodal
imaging with only a small portion interacting with the sample. Note that
the oscillation of the second eigenmode cannot be seen, as it is
assumed infinitely small by the model proposed here. The stiffness
profile of the interacting tip is plotted for three tip shapes: b) punch, c)
paraboloid, d) cone. The weight functions used for integrating these
stiffness profiles are shown for e) the first eigenmode (assuming a
large amplitude) and f) the second eigenmode (assuming a small
amplitude). The weight function for the second eigenmode diverges
where the interaction stiffness is nonzero, reflecting the sensitivity of
bimodal AFM to nanomechanical properties. The 
binomial approximation is illustrated for both weight functions; they are
very accurate approximations in the interaction range, and can be
used to derive a simple analytical solution for bimodal imaging. Note:
the three different x-axes shown in these plots are interchangeable;
they reflect the most appropriate parameterization of the tip position in
each case.

cantilever oscillation [50], as represented in Figure 3. Mathe-

matically,

(6)

where δmax is the maximum indentation depth and the normal-

ized distance u = (δmax − δ)/A1. It is worth noting the distinc-

tion between kint(δ), which is the instantaneous stiffness profile

experienced by the oscillating cantilever tip, and Δk1, which is

the time-averaged effective change in stiffness of the cantile-

ver–tip–sample system that is experimentally measurable by the

AFM user. Measuring Δk1 is the topic of Section ‘Simple

harmonic oscillator theory‘, presented later.

In the limit that the fundamental amplitude A1 is much larger

than the interaction length scale, the stiffness profile kint(δ) only

affects a small portion of the cantilever sinusoidal oscillation

where the tip indents the sample, as shown in Figure 3a. There-

fore, the integration limits in Equation 6 reduce to [0, δmax/A1]

such that u << 1 throughout the integration. Consequently, the

weight function can be approximated very accurately with the

first term in the binomial expansion,  This

approximation, used previously [51], is graphically illustrated in

Figure 3e,f. Applying it to Equation 6 results in

(7)

which can be easily integrated for a paraboloidal indenter to

give

(8)

The relative error in Δk1 introduced by the binomial approxima-

tion is quantified in Figure 4; it typically falls on the order of

1% in large-amplitude dynamic AFM, where the interaction

amplitude A1 greatly exceeds δmax.

Figure 4: The relative error introduced in the calculation of Δk1
because of the  approximation applied to Equation 6 in
the case of a punch, paraboloid, and cone contact model. The

 approximation applied to Equation 10 results in a
similar, albeit negative, error.
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Meanwhile, the second (or higher) eigenmode is deliberately

driven at a small amplitude A2, such that the interaction stiff-

ness it experiences is roughly constant throughout one of the

higher eigenmode oscillation cycles. However, the instanta-

neous interaction stiffness experienced by the second eigen-

mode slowly changes along the trajectory of the first eigen-

mode. Because the second mode rides along the slower sinu-

soidal motion of the first mode, its time-averaged change in

interaction stiffness Δk2 can be calculated by

(9)

where T is the oscillation period of the first eigenmode. A

rigorous derivation of Equation 9 is provided in Appendix (a).

Parametrizing this time integral with respect to distance by the

substitution t = cos−1(u)/ω1 results in

(10)

Similarly to the approach taken with the first eigenmode, this

integral can be solved analytically for a paraboloidal indenter

after applying the binomial approximation 

such that

(11)

Note that the second-mode change in stiffness scales linearly

with indentation depth, Δk2 δmax, while the first mode

stiffness scales with the square of the indentation depth,

. These scaling laws have been verified experimen-

tally for a paraboloidal indenter [39]. The system of two equa-

tions (Equation 8 and Equation 11) can be solved for two

unknowns, namely

(12)

and

(13)

This operation is central to bimodal imaging, as it separates the

changes in modulus from changes in indentation depth. This

distinction cannot be made in single-mode dynamic AFM

imaging.

The key to bimodal nanomechanical imaging is that the same

stiffness profile is measured simultaneously by two different

eigenmodes with different weight functions:  and 

The fact that these weight functions are related by a derivative

operation results in independent measures of nanomechanical

properties by both eigenmodes while imaging. Notably, the fact

that the weight function of the second eigenmode increases

drastically as the tip approaches the sample, as seen in

Figure 3f, explains the high sensitivity and increased spatial

resolution of bimodal imaging noted in the past [52].

Power-law tip
The derivation so far revolved about a paraboloidal indenter.

Applying the same approach used in Equations 6–13 to the

generalized stiffness profile of Equation 5 result in the general-

ized indentation and modulus equations

(14)

and

(15)

where β is a scaling constant that depends only on m and is

mathematically defined in the Appendix (c). As expected,

choosing m = 3/2 in Equation 14 and Equation 15 recovers

Eqution 12 and Equation 13.

The tip shape exponent m is a free parameter in the generalized

stiffness profile. It can be inferred experimentally by measuring

changes in Δk1 and Δk2 for a fixed A1 and relating them to

Equation 15 by the scaling law

(16)

as will be demonstrated later.

Simple harmonic oscillator theory
Measurements of Δk1 and Δk2 are necessary for calculating

δmax and Eeff in Equation 12 and Equation 13 or Equation 14

and Equation 15.
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A single equation that extracts Δk from a driven eigenmode (on

and off resonance) with any number of changing AFM observ-

ables is presented in the Appendix (d). The derivation assumes

the eigenmode in question can be modeled as a simple harmonic

oscillator (SHO) within the range of interactions explored in the

experiment. Here, three special cases (AM, PM, FM) for

starting an experiment on-resonance were extracted from the

general SHO solution for simplicity. These special cases are

presented in Table 1, and described in the following subsec-

tions. The constant-excitation FM mode (CEFM) is also

included in Table 1 for completeness.

Table 1: Using an automatic-gain-controller (AGC) and/or phase-
locked-loop (PLL) to control the cantilever amplitude and frequency,
respectively, leads to four combinations of measurement modes:
amplitude modulation (AM), phase modulation (PM), frequency modu-
lation (FM), and constant-excitation frequency modulation (CEFM).
Using these modes for measuring Δk1 and Δk2 of a cantilever indepen-
dently leads to 16 bimodal configurations: AM-AM, AM-PM, AM-FM,
FM-FM, etc.

Phase-locked-loop (PLL)
OFF ON

Automatic-Gain-
Controller (AGC)

OFF AM mode CEFM mode
ON PM mode FM mode

The last subsection extends the SHO theory to measuring two

eigenmodes simultaneously, as required for bimodal AFM.

Amplitude modulation (AM) mode
For an eigenmode driven in AM mode, the corresponding time-

averaged interaction stiffness can be calculated from the

measured interaction amplitude A and interaction phase  as in

(17)

while the cantilever quality factor Qc, the cantilever stiffness kc,

and the reference amplitude Ar are all measured in the absence

of tip–sample interactions (Ar is often referred to as the “free

amplitude”).

Phase modulation (PM) mode
Alternatively, PM mode uses an automatic-gain-controller

(AGC) to maintain a constant cantilever amplitude A by varying

the drive amplitude D; meanwhile, the drive frequency remains

fixed just as in AM mode. In this mode,

(18)

Note that an AGC is especially beneficial for use on the second

eigenmode, because A2 is often chosen close to the detection

limit and may drop substantially in AM mode when the reso-

nance frequency shifts upon interaction with the sample. The

AGC in the PM mode assures that A2 remains above the detec-

tion limit throughout the experiment.

Frequency modulation (FM) mode
If FM mode is employed for any of the eigenmodes, where the

resonance frequency fc is tracked with a phase-locked-loop

(PLL), the measured frequency shift Δf can be used to estimate

the interaction stiffness by the approximation

(19)

In this mode, the oscillation amplitude is held constant with an

AGC. The use of an AGC will be assumed for “FM mode”

henceforth.

Alternatively, constant-excitation FM mode (CEFM) employs a

PLL but does not use an AGC [53,54]; therefore, the oscillation

amplitude is not necessarily constant throughout the tip–sample

interaction. This less-common technique is not explored in this

article.

Bimodal configurations
In bimodal AFM, both eigenmodes behave like independent

SHO’s because the first mode is driven in the large-amplitude

limit and the second is driven in the small-amplitude limit. An

empirical verification of this independence will be performed

and discussed later.

In principle, both Δk1 and Δk2 can be measured with any of the

four measurement modes described so far, leading to 16

possible configurations: AM-AM, AM-PM, AM-FM, FM-FM,

etc. As an example, the first experimental bimodal measure-

ments were taken in the AM-AM configuration [33]. In their

pioneering work, Heruzzo and Garcia demonstrated FM-FM

measurements [39,55]. Here, the AM-AM, AM-PM and

AM-FM configurations are explored in detail. Practical consid-

erations for these choices will be discussed later.

Results
A polystyrene surface was probed with bimodal approach

curves (also known as “force–distance” curves), where the

bimodally oscillating cantilever approaches the sample with a

constant velocity. The experiment is described in the first

subsection, where the AM-AM, AM-PM, and AM-FM configu-

rations are compared to investigate the validity of the SHO
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Figure 5: Experimental results from three consecutive approach curves on polystyrene using AM-AM, AM-PM, AM-FM configurations for the first
mode (left) and second mode (right). The changes in effective cantilever stiffness for both modes (below) calculated from the observables of each
mode (above) by using Equations 17–19, respectively (reference amplitude Ar1 = 60 nm).

model assumed by the bimodal theory. Then, multiple ap-

proach curves are used to extract the shape and size of the tip.

Finally, the newly defined tip geometry is used to extract the

modulus from all the approach curves to assess consistency of

the results and their dependence on imaging parameters.

Experiment
The experiment was performed on a Cypher AFM with an

ASYELEC-02 cantilever, which has a Ti/Ir-coated tip of nomi-

nal tip radius R = 28 ± 10 nm. Photothermal excitation [56] was

used, which ensures stable imaging [57] and accurate FM

tracking [58-60]. An automated calibration method [61] was

used to obtain the stiffness of the first  eigenmode

(kc1 = 43.2 N/m), which was then used as a basis of calibration

for the second eigenmode stiffness kc2 = 818 N/m by a recently

established calibration protocol [62]. Next, a thermal power

spectral density [63] of the cantilever was acquired close to the

surface (within a few hundred nanometers) to determine the

remaining cantilever properties (fc1, fc2, Qc1, Qc2). For this cali-

bration step, the proximity to the surface is important. Per-

forming it far from the surface incorrectly introduces long-range

cantilever–sample interactions into the final measurement.

Finally, the equipartition theorem was used to convert the

amplitudes of both eigenmodes into nanometers [64-66].

Figure 5 shows approach curves acquired in the AM-AM,

AM-PM, and AM-FM configurations. Equations 17–19 were

used to recover values of Δk1 and Δk2 where appropriate. The

excellent agreement between all three bimodal configurations

across the entire approach curve suggests that the simple
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harmonic oscillator is a valid model to describe the second

eigenmode of the cantilever in this experiment.

Calibration of the tip shape and size
When driving the first eigenmode in the AM mode, large varia-

tions in indentation depth can be achieved by varying the refer-

ence amplitude Ar1 ("free amplitude") while keeping A1 fixed.

Varying the reference amplitude is more effective than

changing A1 which carries a weak dependence on indentation

for a setpoint around A1/Ar1 ≈ 0.5. Consecutive bimodal ap-

proach curves on a polystyrene sample were performed while

varying the reference amplitude Ar1 between 50 nm and 91 nm

in 21 increments. The AM-AM, AM-PM, and AM-FM configu-

rations were alternated. A total of 63 approach curves were per-

formed within 45 min.

The values of Δk1 and Δk2 at a fixed amplitude (A1 = 40 nm)

were used to determine the tip shape using the scaling law in

Equation 16. The results are shown in Figure 6, where the expo-

nent m values for each bimodal configuration were extracted

from a power-law fit and shown to be equal within error; they

averaged to m = 1.24 ± 0.04. This measurement of the tip shape

(m) can now be used to calculate the tip size (L), which is

uniquely determined if the sample modulus is known. Fitting

Equation 15 to the data and setting Eeff = 3 GPa (as approxi-

mately expected for polystyrene [67]) results in a value for the

tip length scale L = 32 nm. This tip characterization suggests a

tip shaped as a rounded punch, somewhere between a punch of

radius R = 32 nm and a paraboloid of radius R = 16 nm.

Figure 6: The set of approach curves in Figure 5 was repeated
21 times at various drive amplitudes. The values of Δk1 and Δk2
extracted at A1 = 40 nm from all 63 approach curves are plotted on a
log–log scale. The line represents a power-law fit to the entire data,
which can be used to determine the tip shape (m = 1.24) by
Equation 16 and the tip size (L = 32 nm) by Equation 15. The inset
shows the range of indentation depths probed in this experiment.

With a defined exponent m value, the absolute indentation depth

at the various Ar1 can be calculated by Equation 15, as shown in

the inset of Figure 6. The calibration of the tip shape and size is

expected to be valid for the explored range of indentations (be-

tween 0.6 nm and 1.2 nm in this case).

Measurement of modulus
With a modeled tip shape and size (m = 1.24, L = 32 nm), the

modulus Eeff was extracted from all 63 approach curves, as

shown in Figure 7. At A1 = 40 nm, the average modulus must be

3 GPa because this was the assumed value from which the tip

size was extracted. Notably, the modulus appears to be indepen-

dent of both A1 and bimodal configuration, as will be discussed

in the next section.

Figure 7: a) The modulus Eeff for all 63 approach curves from Figure 6
was extracted as a function of oscillation amplitude A1. Not only is Eeff
independent of interaction amplitude A1 and reference amplitude Ar1
(free amplitude), the three configurations (AM-AM, AM-PM, AM-FM)
yield the same results within error. Note that a value of Eeff was only
extracted for values A1/Ar1 < 0.75 to ensure that repulsive interactions
dominate.

Discussion
Independence of imaging parameters
The approach curves in Figure 7 span indentation depths from

0.6 nm to 1.2 nm, interaction amplitudes from 25 nm to 70 nm,

and reference amplitudes between 50 nm and 91 nm. The

modulus values at A1 = 40 nm are constrained to match 3 GPa

by the tip shape and size calibration. However, throughout this

range of imaging parameters, the modulus also remains within a

0.15 GPa standard deviation (5%) of 3 GPa, with no obvious

trend. In addition, the three bimodal configurations agree to

better than this standard deviation.

The independence on imaging parameters provides confidence

that the system was accurately modeled by a rounded punch of

shape m = 1.24 and size L = 32 nm. In contrast, assuming a

paraboloidal tip (m = 1.5) results in increased variability in the

modulus, as well as noticeable dependence on imaging parame-

ters. Also, assuming a paraboloidal tip results in a tip radius

R = 93 nm for these experiments, which is far from the nominal

radius for this cantilever tip (R = 28 ± 10 nm).

These results lead to the conclusion that calibrating the tip

shape and size provided a more accurate picture of the tip–sam-
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ple contact mechanics, which led in turn to improved accuracy

in extracting the modulus of polystyrene over a wider range of

imaging parameters.

Given that the bimodal AFM theory was derived in the context

of Hertzian contact mechanics where only repulsive interac-

tions are considered, only data where A1/Ar1 < 0.75 were

analyzed to ensure that repulsive forces dominate over attrac-

tive and adhesive forces. This criterion is somewhat arbitrary

and specific to the current dataset; other samples and tip geome-

tries may require different threshold values of A1/Ar1 or may

require more elaborate models.

AM/PM/FM equivalence
The agreement between AM, PM and FM modes of operation

for Δk2 shown in Figure 5 validates the mathematical frame-

work leading up to Equations 17–19 that assumes SHO behav-

ior of the cantilever. This agreement is reassuring, as a sinu-

soidally-driven SHO model was used for both eigenmodes to

derive the bimodal interaction theory that relates the cantilever

parameters to the interaction profile. Furthermore, the agree-

ment between the modes of operation suggests that the feed-

back loops used for the PM and FM modes tracked changes in

the cantilever eigenmode appropriately.

Large and small amplitude approximations
The amplitude of the first mode was modeled in the large limit,

while the amplitude of the second mode was modeled in the

small limit. The validity of these assumptions was implicitly

verified in the dataset acquired for this experiment, as de-

scribed herein.

The analysis in Figure 7 suggests that the variations in interac-

tion amplitude (25 nm < A1 < 70 nm) do not affect the outcome

of the measured Eeff. This suggests that the large-amplitude

limit for the first mode was fulfilled across the range of

explored amplitudes.

The small-amplitude limit for A2 is tested by the comparison

of experimental configurations. Whereas the second mode

amplitude A2 for AM-AM drops significantly (from 500 pm to

200 pm) during a single approach curve, A2 for AM-PM and

AM-FM is held fixed by the AGC. The fact that all three con-

figurations lead to the same extracted Eeff suggests that the

small-amplitude limit for the second mode was fulfilled.

Sensitivity of bimodal AFM
The high sensitivity of bimodal AFM was predicted in the

theory described in Section ‘Bimodal interaction theory’

and attributed to the introduction of an additional eigenmode

driven at a small amplitude. The argument was based on the

fact that the weight function of the second eigenmode 

rises quickly as the tip approach the sample, as shown in

Figure 3f.

This fact is demonstrated experimentally in the data of Figure 5,

where Δk2 is 20× to 50× larger than Δk1. Whereas both Δk1 and

Δk2 are weighted integrals of the identical stiffness profile

kint(δ), the weight function of the second mode captures much

more of the interaction stiffness for small indentations.

This illustrates the benefit of introducing a small-amplitude

second eigenmode into the measurement: it provides a high-

sensitivity channel of information, without disrupting the mea-

surement as explained in the previous section.

Error from binomial approximation
The error introduced by the  approximation that

allowed the analytical closed-form in Equation 14 and Equa-

tion 15 is now calculated. In the worst case scenario for this ex-

periment with δmax = 1.2 nm and A1 = 40 nm, a relative error of

0.5% is caused by the approximation  In turn,

this results in an overestimation of 0.9% in indentation depth,

and an underestimation of 1.0% in modulus as far as

Equation 14 and Equation 15 are concerned. These errors from

approximation are negligible compared with experimental vari-

ability and absolute calibration error.

Importantly, applying Equation 19 to both eigenmodes results

in FM-FM equations that are identical to those derived by

Herruzo et al. [38,39]. This leads to the conclusion that the

 approximation is sufficient for deriving analyt-

ical equations for bimodal FM-FM and other bimodal configu-

rations. In other words, the use of fractional calculus, Laplace

transforms, Padé approximants, and Bessel functions can be

avoided with no loss in accuracy when deriving bimodal AFM

theory.

Merits of AM-FM
Although the three configurations of bimodal methods tested in

Figure 5 were equally accurate, the AM-AM method has the

disadvantage of potentially having more noise relative to

AM-PM, which in turn may have more noise relative to

AM-FM. In AM-AM and AM-PM, the second eigenmode drive

frequency is held fixed. In that case, when the second eigen-

mode resonance frequency shifts by more than its bandwidth

(fc/2Qc), the signal-to-noise ratio degrades because the signal

drops relative to the noise floor. Furthermore, in AM-AM oper-

ation, A2 decreases upon interaction with the surface – further

aggravating the drop in signal-to-noise ratio. It is therefore often

advisable to operate the second eigenmode in FM mode in prac-

tical situations.
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On the other hand, the first eigenmode typically undergoes

more modest changes in resonance frequency upon interaction

with the surface. Also, these changes are controllable by the

AFM user by the setting of an amplitude setpoint. For this

reason, AM operation on the first eigenmode does not cause the

same decrease in signal-to-noise ratio often observed on the

second eigenmode. More importantly, dynamic AFM imaging

in ambient conditions has relied on the robustness of AM

(tapping-mode) imaging, mostly attributable to the monoto-

nicity of the amplitude versus distance relationship, for stable

operation and topography tracking.

For these two reasons, the authors generally recommend the use

of AM-FM over the other configurations (AM-PM, FM-FM,

etc.), as it is the most robust, versatile and sensitive configura-

tion for bimodal nanomechanical mapping in a wide range of

imaging conditions.

Conclusion
An analysis framework for bimodal AFM with a power-law tip

and Hertzian contact was presented. The derived theory was

used to extract the tip shape and size for an experiment on a

polystyrene sample. For a wide range of imaging parameters,

the experimental data returned a nearly constant modulus of the

material when analyzed with this model. Three configurations

(AM-AM, AM-PM, AM-FM) were tested and shown to provide

equally accurate results, thereby supporting our assumption that

the cantilever second eigenmode can be modeled as a simple

harmonic oscillator for the range of interactions explored in the

experiment.

The approximations used for deriving an analytical closed-form

solution for bimodal AFM were also investigated. Both the first

mode large-amplitude approximation and the second mode

small-amplitude approximation were verified to be accurate for

typical imaging conditions. Notably, the fact that the weight

function of the second eigenmode increases drastically as the tip

approaches the sample explains the high sensitivity and spatial

resolution of bimodal imaging. The binomial approximation of

the stiffness weight function  was shown to

introduce negligible error (<1%), yet it can be used to derive

bimodal AFM theory without invoking the use of fractional

calculus.

The experimental in situ determination of the tip shape and size

is a pivotal step towards absolute quantitative nanomechanical

measurements in a variety of techniques. This work demon-

strates the benefits of tip characterization in the context of

bimodal nanomechanical mapping, which improves the accu-

racy of fast parametric techniques such as AM-FM nanome-

chanical mapping.

Appendix
a. Correction factor for contact radius: αc
The correction factor that accounts for deformation of the sam-

ple that leads to a true contact radius different from the nominal

contact radius [68,69] is given by

(20)

where Γ is the gamma function. Figure 1 graphs αc for values

between m = 1 and m = 2. Note that obtaining αc = 1 at the

value at m = 1 requires a taking a limit.

b. Weighted interaction stiffness of the higher
eigenmode
The weighted integral used to average the interaction stiffness

across one oscillation cycle of the first eigenmode (Equation 6)

also applies to higher eigenmodes; it can be rewritten as

(21)

where u’ is the normalized deflection of the higher eigenmode

in this context. The major distinction between Equation 6 and

Equation 21 is the substitution δmax → δ(t) which accounts for

the non-zero amplitude of the first eigenmode A1 that intro-

duces a time-varying component to the kint experienced by the

higher mode. For a first-mode period T = 1/fc1, this effect can

be averaged over a full cycle by

(22)

In the limit that A2 → 0 and fc2/fc1 → ∞, kint remains constant

throughout any full oscillation cycle of the second mode, such

that Equation 22 solves to

(23)

Notably, this integral that determines Δk2 only depends on the

trajectory of the first eigenmode because A2 is assumed small.
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c. Correction factor for power-law force
model: β
When integrating kint(δ) in Equation 6 and Equation 10 to

obtain Δk1 and Δk2, respectively, for a power-law model

 as defined by Equation 5, gamma functions emerge

due to the integration of non-integer powers. They are summa-

rized here as

(24)

Note that the gamma functions that compose αc in Appendix a

relate to deformation of the sample and have no direct relation-

ship to the gamma functions of β, which relate to the effects of

power-law stiffness profiles affecting the cantilever parameters.

d. Generalized SHO equation
The on-resonance Equations 17–19 are special cases of the

general solution to a simple harmonic oscillator model, which

can be driven on or off resonance with concurrent changes in

drive frequency, phase, oscillation amplitude and drive ampli-

tude. This section derives a general equation that makes no

assumption about which of these variables is held fixed upon

interaction with the sample.

The response of a freely vibrating cantilever with effective stiff-

ness kc, mass mc, and damping bc can be described by the com-

plex-valued cantilever impedance [70]

(25)

where the angular frequency is defined as ω = 2πf. The

subscript “c” reminds that kc, mc, bc are properties of the canti-

lever (prior to the tip–sample interaction) that do not change

throughout the experiment.

A “reference” measurement of this cantilever impedance can be

made prior to tip–sample interaction by exciting the cantilever

sinusoidally with some reference driving force Fr at some refer-

ence drive frequency ωr, which results in a reference oscillation

amplitude Ar and a reference phase :

(26)

The reference driving force can be defined by isolating the

imaginary components of both equations and solving for the

driving force:

(27)

In the presence of some interaction, the cantilever impedance is

subject to a time-averaged change in stiffness Δk and a time-

averaged change in damping Δb, such that the interaction

impedance

(28)

The interaction impedance is inferred during the experiment by

(29)

where the drive force F, the drive frequency ω, the oscillation

amplitude A and the phase response  are measured during

tip–sample interaction.

Subtracting the reference measurement  from the inter-

action measurement , then isolating the real components

and solving for Δk leads to

(30)

Assuming that the drive force F is proportional to the drive

amplitude D and that their relationship is frequency-indepen-

dent implies that

(31)

Substituting Equation 27 and Equation 31 into Equation 30

results in

(32)

With the substitutions

(33)
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and

(34)

that introduce the cantilever resonance frequency ωc and the

quality factor Qc, Equation 32 can be rewritten in a more exper-

imentally friendly form as

(35)

Lastly, driving the cantilever on resonance prior to tip sample

interactions (ωr = ωc;  = 90°) simplifies the result to

(36)

For AM operation, setting D = Dr and ω = ωc results in Equa-

tion 17.

For PM operation, setting A = Ar and ω = ωc results in

Equation 18.

For FM operation, setting A = Ar, enforcing  = 90°, and

applying a binomial approximation results in Equation 19.
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